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PRELIMINARY ANALYSIS FOR A MACH 8 CROSSFLOW TRANSITION EXPERIMENT
ON THE PEGASUS® SPACE BOOSTER

LESLIE GONG, W. LANCE RICHARDS,
RICHARD C. MONAGHAN, AND ROBERT D. QUINN

AEROSPACE ENGINEERS
NASA DRYDEN FLIGHT RESEARCH FACILITY

P.O. BOX 273
EDWARDS, CA 93523-0273

ABSTRACT

A boundary-layer transition experiment is proposed for a future flight mission of the air-launched Pegasus® space booster. The
flight experiment requires attaching a glove assembly to the wing of the first-stage booster. The glove design consists of a spring
and hook attachment system which allows for thermal growth of a steel 4130 skin. This paper presents results from one- and two-
dimensional thermal analyses of the initial design. These analyses were performed to ensure the integrity of the wing and to
define optimal materials for use in the glove. Results obtained from the thermal analysis using turbulent flow conditions showed
a maximum temperature of approximately 305 °C (581 °F) and a chordwise temperature gradient of less than 8.9 °C/cm
(40.5 °F/in.) for the critical areas in the upper glove skin. The temperatures obtained from these thermal analyses are well within
the required temperature limits of the glove.

NOMENCLATURE

CTE Coefficient of thermal expansion, 

specific heat, 

E modulus of elasticity, GPa (Msi)

FS fuselage station, cm (in.)

k thermal conductivity, 

LE leading edge

LTA Lockheed Thermal Analyzer

q heat flux, 

T temperature, °C (°F)

radiation heat sink, °C (°F)

TE trailing edge

X distance measured aft from glove leading edge, cm (in.)

y lateral coordinate measured to the right from vehicle centerline, cm (in.)

z vertical coordinate measured up from vehicle thrust line, cm (in.)

®  Pegasus is a registered trademark of Orbital Sciences Corporation, Fairfax, Virginia.

µcm
cm °C
----------------- µin.

in.°F
------------- 

 

Cp
J

kg K
------------- Btu

lb °F
------------- 

 

W
m K
----------- Btu

hr ft °F
-------------------- 

 

W

m2
------- Btu

ft2 sec
------------------

 
 
 

T∞
1



                           
angle of attack, deg

ultimate stress, MPa (ksi)

yield stress, MPa (ksi)

density, 

INTRODUCTION

The Pegasus® space booster is a three-staged rocket which is air launched from a B-52 aircraft to introduce small payloads into
low Earth orbit.   To understand and predict crossflow transition under hypersonic flight conditions where ground test information
is unavailable, a piggyback flight experiment is proposed for the Pegasus® [1]. A cost-effective flight test technique for conducting
such experiments involves designing and building a temporary test structure, called a glove, and installing it over part of the
existing wing. This technique avoids the need for major modifications to the primary load-carrying wing structure and simplifies
the many systems required for flight test. A thermal analysis was performed to define the optimal materials for use in the glove
design and to predict the glove temperature distributions for the proposed crossflow transition experiment. This paper describes
the preliminary glove design and presents results from one- and two-dimensional thermal analyses. 

BACKGROUND

Figure 1 shows the physical dimensions of the rocket and the proposed glove location. The overall length of the Pegasus® booster
is approximately 14.9 m (49 ft) with a wingspan of 6.7 m (22 ft). The cylindrical fuselage of the rocket is approximately 1.3 m (4.2
ft) in diameter. The wing has a clipped delta planform with a 45° leading-edge sweep angle.

At an altitude of 13,000 m (42,000 ft) and Mach 0.8, the booster separates from the B-52 aircraft, descends for 5 sec, ignites,
and burns for approximately 80 sec. At first-stage burnout, the booster has accelerated to Mach 8 at an altitude of approximately
61,000 m (200,000 ft). The booster follows a fixed trajectory which is predetermined for a particular payload insertion. Figure 2
shows the Pegasus® space booster mounted under the wing of the B-52 aircraft. Trajectory information from previous flights are
provided in references 2 and 3.

GLOVE DESIGN

This section describes the preliminary design of the glove, including the definition of the skin materials, edge-fairing details,
leading-edge attachment, and skin-attachment mechanism. Additional details of the overall glove requirements are given in
reference 1.

Structural design requirements

The outside dimensions of the test surface and the fairings were defined to meet the aerodynamic experiment requirements [1].
The metallic portion of the test surface has a plan view area of 0.985 m2 (10.6 ft2). Aside from the usual flight loads envelope,
the structural design requirements included a waviness criterion not to exceed 0.008 cm (0.003 in.) over a 5.1 cm (2 in.) length
throughout the flight envelope; a requirement to minimize any step discontinuities at the inboard edge of the test surface,
especially near the leading edge, and the requirement to have a thermally conductive skin. Such a skin was needed, so
thermocouples mounted on the inside skin surface would sense heating changes caused by boundary-layer transition. Note that
weight was not a primary design consideration, and the structure was not optimized in this regard.

Test surface design

The structural requirements resulted in a design with a relatively thick metallic outer skin and a large leading-edge heat sink
(figure 3). The test skin is laid over a balsa support surface. This preshaped support is glued to the wing of the Pegasus®.

Figure 4 shows the test skin attached to the balsa-contoured surface using a series of springs spaced on 6.35-cm (2.5-in.)
centers. These springs hold the skin securely to the surface but also allow it to expand thermally with only a small resistance due
to sliding friction. Each spring is attached to the test skin by a 0.152-cm (0.06-in.) diameter wire loop which is brazed to the skin.
A hook engages this loop, and a preload is applied through the spring to react against aerodynamic forces. Insulation placed
inside the hook cavity reduces thermal radiation from the skin.
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The skin is attached rigidly to the Pegasus® wing at its inboard leading edge (figure 5). The test glove leading edge is constrained
to movement parallel to the Pegasus® wing leading edge by a series of slotted attachments. The glove is free to thermally expand
aft and spanwise parallel to the leading edge.

Fairing design

Figure 6 shows an aerodynamic fairing used to blend the test surface into the existing wing. Figure 7 shows cross sections at
locations A-A and B-B and details of the inboard and outboard fairing. This fairing is made in two parts. A hot section
approximately 6 in. wide interfaces with the test surface. This section consists of fibrous silica insulation which was developed for
use as part of the space shuttle thermal protection system. The final blending into the wing is done with a foam fiberglass
sandwich. An ablative coating similar to that used on the Pegasus® wing is applied over the fiberglass and extends over the
interface with the ceramic. The fairing on the inboard side is flush with the test surface. On the aft and outboard fairings, the test
surface overlays the fairing to allow for thermal expansion.

Material selection

Several requirements were identified in the glove material selection process which significantly affected the prediction of
crossflow transition. Boundary-layer transition is highly sensitive to glove shape changes during the flight experiment; therefore,
the shape of the glove must be structurally stable. Local buckling or excessive thermal expansion might compromise the desired
results of the experiment. Several materials were considered for the glove. These candidates are presented in tables 1(a) and
1(b) as a matrix of thermal and mechanical properties. Other factors, such as availability, machineability, and general practical
applications, were also considered.

Steel 4130 was tentatively selected as the most logical candidate for the glove design. However, because of the great impact that
the thermal characteristics have on the temperatures, a one-dimensional thermal model was constructed to compare the affects
of these temperatures on a steel glove with those of an aluminum or a copper glove. The thermal performance of these candidate
materials is described next.

A one-dimensional thermal model of an initial glove design concept was constructed to calculate temperatures at the leading
edge for aluminum, copper, and steel. This initial concept consisted of a metallic skin bonded to fiberglass. In turn, this skin and
fiberglass were bonded to a foam layer [1]. The foam layer is then bonded directly to the graphite-epoxy skin of the Pegasus®

wing.

Figure 8 shows a sketch of this preliminary model. The model consisted of 14 nodes and included aerodynamic heating to the
outer skin and radiation to space. The metallic skin was divided into eight layers with each layer having a thickness of 0.16 cm
(0.063 in.). This figure also shows layers which represent the epoxy, fiberglass, and foam. The outer surface emittance was
estimated to be 0.80, and radiation was to a heat sink temperature of –46 °C (–50 °F).

Three thermal analyses for aluminum, copper, and steel were performed using a finite-difference-based program called the
Lockheed Thermal Analyzer (LTA) (Lockheed Corporation, Burbank, California). Figure 9 shows the three outer skin temperature
time histories. Aluminum and copper resulted in the highest and lowest peak temperatures, respectively. Aluminum was
eliminated as a viable material because of the high skin temperature predictions. The peak temperature difference between the
copper and the steel skin analyses was only 19.2 °C (34.6 °F) on the outer skin. The temperature differences between copper
and steel were small. Since copper is not a very practical structural material, selection of steel for the glove appears verified.

INPUT TO THERMAL ANALYSES

Thermal analyses were required to ensure that none of the maximum operating temperatures of the glove materials were
exceeded. This section describes the procedure used to calculate appropriate parameters used as input to the one- and two-
dimensional thermal analyses. The flight profile and aerodynamic heating are described next.

Flight profile

The F-2 flight trajectory [2] was used as input to calculate the heating rates used for the thermal analysis of the metallic skin.
Figure 10 shows the parameters of Mach number, altitude, and angle-of-attack time histories. To date, the F-2 trajectory produced
the highest heating rates of the four Pegasus® launches [2, 3]. A preliminary thermal analysis showed that the F-2 mission is
significantly higher and, therefore, represents the “worst case” heating condition for the glove design.
3



                                 
Aerodynamic heating

Aerothermal heating rates were calculated using an in-house aerodynamic heating program called THEOSKIN. Time histories of
velocity, angle of attack, and altitude were used as input parameters. This program calculates surface temperatures, heat transfer
coefficients, heating rates, skin friction, and surface static pressures at discrete locations. A cross section of the outer mold line
of the glove was used to determine a wedge angle and the surface locations of the node points from the thermal model. These
surface locations were required to determine flow distances and expansion angles needed for heating calculations.

This program permits use of different theories for calculating heat transfer. These theories can be applied for each location of
interest for laminar or turbulent flow conditions in addition to flows with transition. Transition can be input as a function of Reynolds
number and local Mach number or of time. At the leading edge, the Fay and Riddell Method was used to calculate the stagnation
point heating rates with sweep [4]. Swept cylinder theory was used to determine local flow conditions. Heating rate distributions
around the leading edge used the Lees theory [5]. On the glove skin aft of the leading edge, local flow conditions were calculated
for an attached flow using the oblique shock theory [6]. The heat transfer coefficients were calculated using Eckert's Reference
Enthalpy Method [7, 8]. This method was used in calculating the heating rates for laminar and turbulent flow conditions for the
upper and lower surface of the glove. Real gas properties of air were used in all calculations [9].

RESULTS AND DISCUSSION

The aerodynamic heating results were used as input to the one- and two-dimensional analyses. These analyses are described
next.

One-dimensional thermal analysis

A preliminary one-dimensional model was used to determine if the spring and hook assembly would have an appreciable affect
on the skin temperature calculations and, therefore, be required in the two-dimensional thermal analysis. Figure 11 shows two
thermal skin models. Model 1 is the skin model without the spring and hook assembly and consists of six conduction resistors,
six capacitor nodes, and one external radiation resistor. Model 2 is the skin model with the spring and hook assembly and is
comprised of 19 conduction resistors, 16 capacitor nodes, and 1 external radiation resistor. The aerodynamic heating is applied
to the external skin nodes as shown.

Figure 12 shows the skin temperatures of models 1 and 2. As shown, the temperature differences between the two models are
negligible. The maximum difference between the calculated skin temperatures with and without the spring and hook assembly
was 4.4 °C (8 °F). Based on the results of the one-dimensional analysis, the spring and hook assembly was neglected in the two-
dimensional model of the glove. This simplification in the thermal model did not significantly affect the results of the two-
dimensional analysis.

Two-dimensional thermal analysis

A drawing of the two-dimensional model is shown in figure 13. This model consists of 123 conduction resistors, 75 capacitor
nodes, and 22 external radiation resistors. Aerodynamic heating was applied to each of the 22 external surface nodes. The outer
surface emittance was estimated to be 0.8, and the external radiation was to a sink temperature of –46 °C (–50 °F). The two-
dimensional thermal model of the glove was used to determine the optimum thickness of the metallic skin for minimum
temperature, minimum weight, and structural integrity. 

Figure 14 shows the outer mold line of the metallic glove and the locations of the thermal model nodes. Table 2 lists the distances
of the nodes from the leading edge together with the overall skin thicknesses at each surface node location.

Figures 15, 16, and 17 show the results of the two-dimensional analysis. These figures show results of the temperature time
histories for seven locations on the glove from X = 3.33 cm (1.31 in.) to X = 79.32 cm (31.23 in.). Figure 15 shows the results
obtained when the boundary-layer flow was assumed to be all laminar. The maximum temperature for this calculation was 128 °C
(262 °F), and the maximum temperature gradient was 15.1 °C/cm (69 °F/in.) between X = 3.33 cm (1.31 in.) and X = 4.88 cm
(1.92 in.) at 79 sec.

Figure 16 presents the calculated temperature time histories, assuming an all turbulent boundary layer. The maximum
temperature obtained was 305 °C (581 °F), and the maximum temperature gradient occurred between X = 6.48 cm (2.55 in.) and
X = 11.63 cm (4.58 in.) and was 26.9 °C/cm (123 °F/in.).
4



                                          
Figure 17 shows the temperature time histories calculated with boundary-layer transition. The boundary layer was all laminar for
locations from X = 3.33 cm (1.31 in.) through X = 11.63 cm (4.58 in.). For X locations of 28.80, 54.00, and 79.32 cm (11.34, 21.26,
and 31.23 in.), these calculations were initially turbulent and transitioned to laminar flow at 40, 45, and 50 sec, respectively. The
maximum temperature obtained was 131 °C (268 °F), and the maximum temperature gradient occurred between X = 3.33 cm
(1.31 in.) and X = 4.88 cm (1.92 in.) and was 15.1 °C/cm (69 °F/in.).

CONCLUSIONS

Thermal analyses were performed for the preliminary design of the Pegasus® Glove Experiment. These analyses helped in the
material selection for the glove as well as to predict the glove temperature distributions resulting from the Mach 8 flight trajectory.
Results from several models were presented, including a one-dimensional model of the leading edge, a spring and hook thermal
model, and a two-dimensional thermal model of the entire glove. The leading-edge thermal analysis results verified that steel was
a more suitable metal than either aluminum or copper. The spring and hook analysis results showed that the heat transfer through
the spring and hook hardware did not appreciably affect the steel skin temperatures. For critical portions of the flight between
55 and 75 sec, the temperature difference between the skin temperature with and without the spring and hook was less than
1.8 percent.

The two-dimensional thermal analysis results showed that the glove design presented in this paper meets the requirements of
the proposed crossflow transition experiment. By refining the leading-edge and glove skin thicknesses of the leading edge and
skin, the peak upper surface temperature was maintained below 305 °C (581 °F). Temperature gradients in the thinnest skin
sections were no more than 8.9 °C/cm (40.5 °F/in.) for the three flow conditions examined.

REFERENCES

1. Bertelrud, Arild, Kolodziej, Paul, Noffz, Greg K., and Godil, Afzal, “Plans for In-Flight Measurement of Hypersonic Crossflow
Transition on the Pegasus® Launch Vehicle,” AIAA-92-4104, Aug. 1992.

2. Noffz, Gregory K., Curry, Robert E., Haering, Edward A., Jr., and Kolodziej, Paul, Aerothermal Test Results From the First
Flight of the Pegasus® Air-Launched Space Booster, NASA TM-4330, 1991.

3. Noffz, Gregory K., Moes, Timothy R., Haering, Edward A., Jr., and Kolodziej, Paul, Aerothermal Test Results From the Second
Flight of the Pegasus® Booster, NASA TM-4391, 1992.

4. Fay, J.A. and Riddell, F.R., “Theory of Stagnation Point Heat Transfer in Dissociated Air,” J. Aeronaut. Sci., vol. 25, no. 2,
Feb. 1958, pp. 73–85, 121.

5. Lees, Lester, “Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds,” Jet Propulsion, vol. 26, no. 4,
Apr. 1956, pp. 259–269, 274.

6. Ames Research Staff, Equations, Tables, and Charts for Compressible Flow, NACA report 1135, 1953.

7. Eckert, Ernst R.G., Survey of Boundary Layer Heat Transfer at High Velocities and High Temperatures, WADC TR-59-624,
Wright-Patterson AFB, Ohio, 1960.

8. Zoby, E.V., Moss, J.N., and Sutton, K., “Approximate Convective-Heating Equations for Hypersonic Flows,” J. Spacecraft and
Rockets, vol. 18, no. 1, Jan./Feb. 1981, pp. 64–70.

9. Hansen, C. Frederick, Approximations for the Thermodynamic and Transport Properties of High-Temperature Air, NASA
TR R-50, 1959.
5



Table 1. Physical properties of candidate materials.

(a) SI units.

TMInconel X is a registered trademark of the International Nickel Company, Huntington, West Virginia.
TMRené 41 is a registered trademark of Teledyne Allvac/Vasco Marketing, Monroe, North Carolina.

Material Physical properties Mechanical properties

Strength at 25 °C Strength at 200 °C

E,
GPa

Aluminum

2024-T4 130 2768 879 2434 23.2 427 310 324 241 73

6061-T6 168 2713 963 2612 23.6 310 276 241 207 69

Copper 99.95

Hard 391 8941 376 3369 16.6 345 310 – – – – – – 123

Soft 391 8941 376 3369 16.6 221 76 – – – – – – – – –

Nickel

Inconel XTM 11.8 8304 439 3650 12.1 1069 690 1007 627 214

René 41TM 11.8 8249 334 2763 11.9 1172 896 1103 876 207

Steel

1018 51.9 7861 485 3818 12.1 379 248 – – – – – – 207

4130 43.3 7833 477 3739 11.3 655 517 627 448 207

301,4(SS) 17.3 7916 439 3480 16.6 517 207 414 179 200

Titanium

6Al-4V 7.3 4429 502 2225 8.8 896 827 696 579 114

5Al-2.5Sn 8.0 4484 544 2440 9.4 827 779 604 561 107

k ,

W
mK
---------

ρ,

kg

m3
-------

Cp,

j
kgK
-----------
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kJ

M3K
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µcm
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Table 1. Concluded.

(b) English units.

Material Physical properties Mechanical properties

Strength at 75 °F Strength at 400 °F

Aluminum

2024-T4 75 0.100 0.210 0.021 12.9 62 45 47 35 10.6

6061-T6 97 0.098 0.230 0.021 13.1 45 40 35 30 10.0

Copper 99.95

Hard 226 0.323 0.090 0.029 9.2 50 45 – – – – – – 17.8

Soft 226 0.323 0.090 0.029 9.2 32 11 – – – – – – – – –

Nickel

Inconel XTM 6.8 0.300 0.105 0.032 6.7 155 100 146 91 31.0

René 41TM 6.8 0.298 0.080 0.024 6.63 170 130 160 127 30.0

Steel

1018 30 0.284 0.116 0.033 6.7 55 36 – – – – – – 30.0

4130 25 0.283 0.114 0.032 6.3 95 75 91 65 30.0

301,4(SS) 10 0.286 0.105 0.030 9.2 75 30 60 26 29.0

Titanium

6Al-4V 4.2 0.160 0.120 0.019 4.9 130 120 101 84 16.5

5Al-2.5Sn 4.6 0.162 0.130 0.021 5.2 120 113 88 81 15.5

k ,

Btu
hr ft °F
--------------------

ρ,

lb

in3
-------

Cp ,

Btu
lb °F
-------------

ρCp,

Btu

in3
 °F

----------------

CTE ,
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in. °F
---------------
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Outer node
number

Steel skin
thickness,

Distance from glove
leading edge,

cm cm

82 0.229 34.47

83 0.229 22.96

84 0.229 12.34

85 0.635 6.48

86 0.635 4.88

87 0.635 3.33

1 0.953 2.11

2 0.935 1.27

3 1.070 0.58

4 1.220 0.15

5 1.270 0.00

6 1.220 0.15

7 1.070 0.58

8 0.935 1.27

9 0.935 2.11

127 0.635 3.33

126 0.635 4.88

125 0.635 6.48

124 0.229 11.63

123 0.229 28.80

122 0.229 54.00

121 0.229 79.32

Outer node
number

Steel skin
thickness,

Distance from glove
leading edge,

in. in.

82 0.090 13.57

83 0.090 9.04

84 0.090 4.86

85 0.250 2.55

86 0.250 1.92

87 0.250 1.31

1 0.375 0.83

2 0.375 0.50

3 0.421 0.23

4 0.481 0.06

5 0.500 0.00

6 0.481 0.06

7 0.421 0.23

8 0.375 0.50

9 0.375 0.83

127 0.250 1.31

126 0.250 1.92

125 0.250 2.55

124 0.090 4.58

123 0.090 11.34

122 0.090 21.26

121 0.090 31.23

Table 2. Skin thicknesses and locations for the two-dimensional thermal model.

(a) SI units. (b) English units.
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Fig. 1. Pegasus® launch configuration and proposed glove location.
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Fig. 2. Pegasus® space booster mounted under the wing of a B-52 aircraft.

Fig. 3. Leading-edge glove structure.
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Fig. 4. Spring and hook skin attachment assembly.
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Fig. 5. Glove leading-edge-fixed and -sliding attachments.

Fig. 6. Plan view of the Pegasus® booster and test glove.
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Fig. 7. Test skin edge fairings.

Fig. 8. One-dimensional LTA model used to predict leading-
edge skin temperatures.
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Fig. 9. Comparison of outer skin temperatures for three different materials.

Fig. 10. Flight trajectory parameters of Mach number, angle-of-attack, and altitude.
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Fig. 11. One-dimensional thermal models of the glove skin with and without the spring and hook assembly.

Fig. 12. Comparison of surface temperatures with and without the spring and hook assembly.
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Fig. 13. Two-dimensional thermal model of the Pegasus® glove.

Fig. 14. Outer mold line of the metallic glove and locations of the thermal model nodes.
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Fig. 15. Predicted surface temperatures using all laminar flow conditions.

Fig. 16. Predicted surface temperatures using all turbulent flow conditions.
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Fig. 17. Predicted surface temperatures using flow with transition.
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